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We distinguish between ontic and praxic formulations of quantum theory and adopt a
praxic one. We formulate a reversible higher-order quantum logic in a large Clifford al-
gebra Cliff(ι). We use it to describe the operation of the Quantum Universe As Computer
(Qunivac). The qubits of Qunivac are associated with Clifford units with a real Clifford–
Wilczek statistics. We encode the spin-1

2 Dirac equation on Qunivac in an exactly
Lorentz-invariant ultraquantum space–time. Qunivac violates the canonical Heisenberg
indeterminacy principle and locality in a way that should show up at high energies only.
Qunivac accommodates a field theory.
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1. QUANTUM THEORY

There are today two inconsistent versions of quantum physics at large, which
I call ontic and praxic. The praxic one is practiced widely, works well, and is
professed by a small minority. The ontic is widely professed and almost never
practiced. It is not self-consistent.

The discord appeared in the early days of quantum theory. Heisenberg in-
vented a matrix mechanics, dealing solely with processes or operations, represented
by matrices. Schr¨odinger invented a form of wave mechanics, an ontic theory in
that it claimed to deal with real physical waves. The wave theory, however, was
after-fitted with ad hoc translation rules that made it consistent with experiment
and matrix mechanics. The resulting ontic theory propagated more rapidly than the
praxic one—perhaps because it is more visualizable—and now has almost driven
the praxic one out of the classroom.

Natural language not only conflicts with special relativity in its tense structure,
but also conflicts with quantum physics in its predication structure. Ontism is built
into natural language. In both cases natural language assumes a nonexistent now,
an “is” that actually isn’t, a reality (or thingness) underlying actuality (or actness).
Bacon would call this “is” an idol of the tribe (Bacon, 1994).
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For illustration we juxtapose and align selected formulations of the two classes
of theories that we call praxic and ontic, respectively (Finkelstein, 1996), taken
from matrix mechanics and wave mechanics.

1.1. Praxic Theory

Ideal input and output processes are represented by vectors|i 〉 and dual
vectors〈o|. The transition probability from|i 〉 to 〈o| is

P = cos2 θ := |〈o|i 〉|2. (1)

[The purist will object to vectors in a purely matrix mechanics. I use them to
paraphrase the ontic theory most closely. The pure matrix form of the Malus–Born
law gives the probability for a random quantum from a white source to go through
a throughput process represented by a matrixT and be counted by an ideal black
sink: P = Tr T∗T/Tr 1. Now we represent Malus’ initial and final polarizing filters
by projection matricesPi , Po in T = PoPi , not vectors.]

1.2. Ontic Theory

A quantum system has a state represented by a vector|i 〉. If the system passes
through an ideal polarizer its state changes to a state|o〉 defining the polarizer.
The transition probability for this is

P = cos2 θ := |〈o|i 〉|2. (2)

1.3. The Miscount

In their mathematical structures, (1) and (2) are identical. There is no way to
tell that one theory is sound, and one unsound, from the mathematical theory. We
have to watch them in use to discover this.

In the praxic formulation the vectors represent processes. The ontic theory
has mistaken them for states, and introduce strange processes like state collapse
to compensate for this error.

One sees this when von Neumann speaks of two modes of intervention,1
and2, into a quantum system, representing measurement and propagation (von
Neumann, 1932). The count is wrong. There are three buildings, not two, at accel-
erator facilities, housing three modes of intervention,I , T, O, of inflow, through-
flow, and outflow; or beam preparation, target interaction, and counting. These
processes are represented by the three factors in the transition amplitude〈O|T |I 〉.
They exist in the simplest quantum experiment too.

The ontic theory did not count the input process because it mistook the pro-
cess vector|i 〉 for a state. It counts as processes what are merely intervals between
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processes. A figure-ground reversal has occurred. The ontist imagines an inter-
vention of kind 2 that transforms|i 〉 into T |i 〉, and an intervention of kind1 that
collapsesT |i 〉 into 〈o|. No such things occur in the laboratory.|i 〉 does not trans-
form into T |i 〉 and then collapse into|o〉. The process|i 〉 is simply followed byT
and then by〈o|, if the quantum reaches the counter.

There is no way to tell from the mathematical theory whether the praxic or
ontic theory is right. The error is in the semantics. The use of the theory is described
incorrectly.

1.4. Correspondence Principle

Calling a wave function a state violates the correspondence principle. The
classical correspondent of a wave function is a Hamilton–Jacobi function. This is
not a state but a coordinate transformation.

A photon polarization in flight along an optical bench—say on thez-axis—is
postulated by the ontic theory to have a stateψ(z, t) at timet , a unit vector of two
complex components, with overall phase ignored.

There is a physical system that has such a state. In the ontic theory, a photon
polarization is a particle moving on a 3-sphere with a special first-order dynamical
equation; except that unlike such a particle it jumps in a certain probabilistic way
when we do what quantum physicists persist in calling a measurement of the
polarization along some chosen direction.

The term “measurement” is a misnomer according to the ontic theory, which
claims that the process is actually a certain kind of kick of the particle state. We
never do what the ontist can call observing the particle, which is to measure its state
ψ at some time. What we measure in quantum theory is a Hermitian observable,
not a wave function.

1.5. Thought Experiment in Semantics

We should watch the working physicist using the theory to describe the use
correctly. The earliest quantum experiment suffices. Malus (1805) considered a
photon that has passed undeflected through one crystal of Iceland spar—that is
part of the input process|i 〉—and is about to meet another crystal in the outtake
process〈o|. Equation (1) is Malus’ law for the probability that the photon will
again be undeflected.

In the thought experiment we lead a trained quantum physicist to the optical
bench and ask her/him to estimate whether a certain photon—say the first after
high noon—that has passed undeviated through the first crystal will pass undeviated
through the second crystal.

He/she knows not to make any further measurement on said photon in flight
between the polarizers, because that could change it and the outcome. He/she
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might measure the angleθ between the input crystal and the outtake crystal, and
use Malus’ law. She/he might put a billion other photons through a like process,
count the fraction that pass the test, and use that fraction as the probability for the
given photon. But in any case her/his practice is not the astronomer’s. He can look
at the planet itself to tell where it goes and whence it came. She/he must look at
the polarizers, not the photon, for the two polarization angles; and nothing she/he
can do to the photon will give her/him that information.

We should not call either angle the state of the photon because, whether we
call it a state or not, it is not of the photon but of the polarizer.

Transition probability and|i 〉 and〈o| are features of the experimental process,
not of any one product of that process. Aψ does not evolve into aφ during a Malus
experiment. We choose both freely when we set up the two crystals. They are not
the kind of things that evolve but the kind of things that we do.

1.6. Quanta Have No State

It is tempting to take the input process for its product in a first formulation.
In classical physics, the input process, the state, and the output process of an
allowed transition all determine each other uniquely for purposes of prediction
and retrodiction. The classical observer could look at any of them to determine the
state.

The quantum physicist, however, does not have that choice, but must note
all the processes, which are almost independent of each other in the allowed
transitions.

The situation was clearly formulated by Bergmann (1967). The concept of
state is inappropriate for quanta.

Quantum theory is a theory of quantum processes. It is no more a theory of a
state than special relativity is a theory of the present. This is why Heisenberg called
his theory nonobjective and why Blatt and Weisskopf refer toψ ’s as channels, not
states (Blatt and Weisskopf, 1952). Aψ describes the process, not the product
of the process. There is no problem of “collapse” of the state in quantum theory
because there is no state to collapse.

The ontic theory loads the photon with an infinity of information, its “state,”
and denies that the photon can divulge one bit of that information in a measure-
ment. This is the kind of theory that our fathers warned us against. It feigns a
hypothesis.

The mathematical problems of the quantum theory all correspond exactly to
problems of the ontic theory, but the ontic theory is wrong for the quantum polar-
ization. The natural-language term “state of the system” has a reserved meaning in
physics. We err if we call the data that define the state of Venus “the state of Mars”
or “the state of the astronomer.” We call state of a system something that we can in
principle learn from the system itself and that predicts exactly the system’s future
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behavior. Aψ has neither property. Calling aψ the state creates a discord between
quantum practice and ontic principle that creates unease in the ontic physicist, and
the better the quantum theory works, the greater the unease. Aψ represents neither
a quantum nor the state of one, but a process that produces a quantum.

2. QUANTUM COSMOLOGY

Every quantum field theory since Dirac’s quantum electrodynamics has been
a quantum theory of the universe. Quantum practitioners generally ignore philo-
sophical problems about self-reference when they make such theories. We argue
here that they proceed correctly.

To be sure, these cosmical theories are conspicuously nonoperational. No one
in the universe can prepare or register it all sharply. Any physical experimenter is
made of the very particles and fields of the theory and so is in the field system,
not outside it experimenting on it. For a quantum experimenter, self-measurement
would generally be suicidal, unrepeatable, and hence not a measurement.

At first Bohr objected strenuously to a quantum theory of the universe for
such reasons. But later he withdrew his objections (Bohr, 1936). It has always been
understood, at least tacitly, that one may correspond such theoretical descriptions
of the cosmos to those of a physical experimenter, by ignoring the variables that
the experimenter ignores, including the vital variables of the experimenter, and
noting only those that the experimenter notes.

For those who think that a quantum system has a state, however, it is only one
step to thinking that the universe has one, and then one more to wondering what
collapses it. This is the ontic fallacy on a cosmic scale.

The quantum cosmology of field theory and the one we use here corresponds—
in the sense of Bohr’s correspondence principle—to Laplace’s classical cosmology
and is just as natural. Laplace invented a supreme astronomer who knows the state
of the universe. Correspondingly we may imagine a supreme quantum Cosmic
Experimenter (CE) who inputs the polarized cosmos with a grand|I 〉 before our
experiments and outtakes it with an〈O| after our experiments. We need the CE
to formulate a cosmology as much as Laplace did, but if we want to do quantum
cosmology she/he has to be a quantum CE.

These cosmologies are not operational. They deal with fictitious processes
carried out by the fictitious CE. We extract operational predictions from them just
as Laplace would.

We describe an actual experimenter as a subsystem of the cosmos with its
own algebra, and ignore or average over the degrees of freedom of the cosmos that
the actual experimenter ignores, especially those of that very experimenter.

If the CE were to have set us up before the fact to do our little experiments and
were to read our notebooks after the fact, then her/his readings would be consistent
with ours (von Neumann, 1932).



P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464427 June 12, 2003 18:2 Style file version May 30th, 2002

182 Finkelstein

The extracosmic CE is our metaphorical way of allowing for all possible
experimenter/system interfaces within one embracing theory. The cosmic algebra
is not operational but contains operational algebras as quotients. Quantum theory
was already the most relativistic theory we have. Quantum cosmology relativizes
it further. It relativizes the experimenter.

Ontists may function in such a quantum cosmology just as they do in labo-
ratory applications. Having imagined a cosmic state-vector, they may imagine a
cosmic observer to collapse it by an observation at the end of time.

3. QUNIVAC

Now we describe the structure of the cosmic computer from this extracosmic
viewpoint. We begin with the algebra of the universe.

3.1. Quantization Is Stabilization

The standard model of the elementary particles has several non-semisimple
groups: groups that are reducible but not decomposable. So does Einstein’s model
of gravity. All such theories are unstable with respect to small variations in their
structure tensors (In¨onü and Wigner, 1952; Segal, 1951) called group expan-
sions here. They are singular limits—called group contractions—of deeper, stabler
theories that preserve all the basic principles of quantum theory and relativity, at
least asymptotically, and are more unified. One of these expanded theories prob-
ably fits experiment better than the present contracted theory (Segal, 1951). The
contracted theory has probability 0.

One of the deeper instabilities is that of the canonical commutation relations,
the differential calculus, and the space–time continuum (Segal, 1951). Group ex-
pansion replaces the canonical commutation relations by the Segal relations:

Newton HeisenbergSegal

q̂ p̂− p̂q̂ = 0 hi hi,
i q̂ − q̂i = 0 0 h′ p̂,
i p̂− p̂i = 0 0 h′′q̂

(3)

Here, sincei is anti-Hermitian, we consider antihermitian generatorsq̂ = iq and
p̂ = i p instead of Hermitian observablesq, p. The Segal ultraquantum commuta-
tion relations supplement the Planck quantum constanth with two Segal ultraquan-
tum constantsh′, h′′ 6= 0. Ultraquantization gives all canonical variables including
time and energy simple, discrete uniformly spaced spectra, but still respects the
experimental results of the quantum theory as long ash′, h′′ are sufficiently small,
and preserves orthogonal group symmetries (like Lorentz and de Sitter invariance)
exactly.
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This discreteness encourages us to postulate an elementary-process hypoth-
esis to replace and unify the continuum hypothesis and the atomic hypothesis:
All physical processes are composed of finitely many finite elementary quantum
processes.(Finkelstein, 1969, 1972, 1996; Wheeler, 1973).

We assert this for space–time translations and boosts as well as particle cre-
ation and annihilation. We assume that the elementary quantum process—we call
it a chronon for short—lasts at least a minimum timeX, and transfers at most a
maximum energyh/X.

4. REVERSIBLE LOGIC

We assemble qubits into Qunivac by noting how one assembles bits into a
classical computer, and assembling quanits into Qunivac similarly.

Since nature is reversible, Qunivac must be reversible in the well known
sense of Bennet and Fredkin. To describe a reversible computation we formulate
a reversible set theory and logic, classical in this section and quantum in the next.

4.1. Reversible Classical Logic

Classical computers are usually assembled conceptually using class or set
algebra. Boole in classical logic and von Neumann in quantum defined a class
by an idempotent representing a process of selectione2 = e. Selection, which is
filtration, has no inverse. We therefore define areversible classor predicate by a
half-wave plate rather than a filter. The operator representing it has eigenvalues
1 and−1. Expressed in terms of the old logical concepts, a reversible predicate
is represented by a function assigning+1 to elements of the class and−1 to
nonelements rather than discarding them.

Set algebra is usually based on operations∪ and∩ which have identity el-
ements but no inverse. These are unsuitable for a reversible logic or a reversible
universe. For a reversible set algebra we replace them by reversible operations,
which therefore form a group (assuming associativity here).

The only two reversible logical operations on truth values are XOR and its
negation EQUALS. We arbitrarily choose XOR as the more familiar of the two.
The XOR of two reversible predicates is their arithmetic product as functions from
elements to±1. Then 1 must represent the empty set, which is the identity for
XOR.

We still need an element of structure to define the complement, to tell a unit
class from its complement, and to define the universal class.

We introduce aZ-valued logical grade|x| for this purpose. This is just the
modulus of the old class logic: The grade is 0 for the null set, 1 for unit sets, and
so on. For disjoint sets only,|xy| = |x| + |y|.
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Our reversible classical logic (or set theory) is thus a graded group of unipotent
elementsx2 = 1.

4.2. Reversible Quantum Logic

To go from the classical to the quantum logic we turn to superposition. The
reversible quantum class or set algebra is then the linear associative real algebra
generated by the unit sets, which are still unipotent:x2 = 1. In a relativistic theory
we generalize to asx2 of ±1. This is the Clifford algebra generated by the unit
classes or sets (Finkelstein, 1982). A reversible quantum logic is a Clifford logic.

There are a number of indicators that the Clifford logic should replace the
von Neumann one in fundamental studies. Stability in the sense of Irving Segal;
simplicity in the algebraic sense, which is closely related; spinoriality, which goes
with every Clifford algebra; and now reversibility, which we had not noticed before.

Class algebra, reversible or not, is the boring part of set theory for software
architects. Computation usually has a hierarchic structure, for forming programs
composed of subprograms. The creative process is setting up the hierarchic struc-
ture. Since nature has a hierarchic structure Qunivac must have one too.

The hierarchic operation of classical set theory is the power set functor
P : X 7→ 2X. Set calculus is the theory of the iterated power set functor. We use
the power set to organize the computer, to construct its organs.

Our quantum power set functor is the Clifford algebra functor Cliff:A 7→ 2A

from graded algebras to graded algebras.
Till recently (Finkelstein, 1996), I still used Grass, not Cliff, to form a set

calculus, but that theory is unstable and irreversible, and the Clifford logic is its
stabilization (Baughet al., 2001).

We call a quantum aggregate described by a Clifford algebra over the one-
quantum algebra asquad. The qubits of a squad obey a real variant of Wilczek’s
Clifford statistics (Nayak and Wilczek, 1996; Wilczek, 1998; Wiczek and Zee,
1982).

If the qubit of Qunivac has a (real) algebraA, the algebra of observables of
a squad of qubits, say the entire Qunivac, is the Clifford algebra2A. The grade of
this algebra counts elementary computer operations, which have grade 1.

The elements of the classical set calculus are built inductively from 1 (the
empty set) with Peano’s unitizer or successor operatorιz= {z}, ι : X→ 2X. Our
quantumι : C→ 2C is a linear morphismC→ 2C that transforms any element
z ∈ C into a first-grade elementιz ∈ C and reverses the norm‖z‖ := Rez2:

(ιz)2 = −‖z‖.‖ιz‖ = −‖z‖. (4)

We introduce this sign reversal to generate the indefinite metrics needed for rela-
tivity and gauge theory.
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The operatorι has no inverse since most sets are not unit sets, but is reversible
in that any unit set has a unique element, so thatι has a left inverseιb : ιbι = ld.
We fix ιb uniquely by setting it to 0 on all sets of sharp grades other than 1.

Then we define the reversible quantum logicC = Cliff( ι), the real Clifford
algebra generated byι. Since one calls a Clifford algebra with four units the
quaternions, we might call Cliff(ι) the infinions.

This provides new content to the old surmise (Finkelstein, 1969, 1972) that
the quantum universe is a quantum computer.

We suppose that in any possible universe a cosmical but finite numberN of
anticommuting binary variables suffices, generating a finite-dimensional subalge-
bra of the infinions that can be called the cosmonions.

The Clifford sum provides Qunivac with the famous quantum parallelism that
lets it compute so fast.

Iterated Clifford-algebra formation provides a hierarchy-generating, or
subprogram-forming, function for Qunivac.

A mode of Qunivac is then represented by a spinor of the cosmonion algebra.

4.3. Fermions

We have programmed Qunivac for a Dirac particle in a quantum space–time
(Galiautdinov and Finkelstein, 2001). It respects Lorentz invariance exactly. Its
quantification preserves and strengthens the observed spin–statistics correlation,
now giving it a purely algebraic origin.

On the other hand Qunivac beats the standard Heisenberg uncertainty rela-
tions. Position and momentum are now proportional to angular momentum op-
erators in higher dimensions and so is their commutatorη (Galiautdinov and
Finkelstein, 2001). All three can be exactly 0 at the same time in a singlet channel.
We expect that as in quaternion quantum field theory,η contracts to the Higgs
field in the limit X→ 0, N →∞ andi h is its effective value in the vacuum. The
usual Heisenberg indeterminacy relations appear to be good approximations only
for values ofη (hopefully, the Higgs field) close to its vacuum value.

At high energy,∼h/X, Qunivac also violates the usual continuum-based lo-
cality principle. Elementary processes connect events separated not infinitesimally
as Einstein postulated but by a timeχ (Chi), the chronon time. At energies much
lower thanh/X this would not show up strongly in the experimental data.

The simplest stabilization of the Dirac equation predicts an upper bound
h/(Xc2) on the mass of elementary fermions. If we tentatively identify this limit
with M(Top quark), we can estimateX. The distancecX is then two or three orders
of magnitude smaller than Dehmelt’s estimate of the electron size (Dehmelt, 1998).

It is conceivable that Dehmelt’s form factor size and ourX are both right.
This would, however, imply that the electron is quite composite, as Dehmelt
proposes.
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X is many orders of magnitude greater than the Planck time. This need not
trouble us. The Planck time comes from two unstable contracted theories that may
lack X. We propose thatX is a more serious limit arising from the ultraquantum
structure of space–time and that the gravitational field is a condensate like the
Higgs field.

4.4. Fields

Field theory begins with a partition of variables into field and space–time.
The space–time variables are of the experimenter, the field variables are of the
system. The set of fields is locally an exponentialYX, whereY is the field fiber
andX is the space–time.

Programming Qunivac for field theory requires us to define the set exponential
YX when the field variable spaceY and the space–timeX are both quantum, with
Clifford algebras for their operator algebras. We insist on the correspondence
principle. Our construction must have a reasonable classical limit.

To represent a field Clifford algebraically we first represent the universe as
a squad of eventsU = 2E. Then we reduce each eventE to a pairE = y⊗ X.
X gives its location andy describes a “filament” atX, so called because the fiber
of this quantum field bundle will be a squad ofy’s. This factorization irepresents
a condensation that reduces the orthogonal group of the eventE to a product of
two smaller orthogonal groups. We then define the field algebraU = YX := 2y⊗X.
The field fiber at each point is clearlyY = 2y: a squad of filaments indeed.

This construction is possible and easy when and apparently only when the
field algebraY at each point has the formY = 2y. This happens to work for spinor
fields.

Since we have formulated this quantum field entirely in Clifford algebra, it is
easy to see a classical limit. One simply replaces2 by 2 throughout and recovers
discrete field theory.

In an earlier quaternionic theory the varyingi h provided the Higgs field
and reduced the gauge group. Now the quaternions have spawned a cosmological
number of Clifford units and the question is reopened.

It seems possible that the cosmos can be described as an ultraquantum logi-
cal engine. In von Neumann’s classic treatise on quantum theory (von Neumann,
1932), he interpreted quantum theory as a revised physical logic, which shaped
my subsequent research. When he was asked to update Hilbert’s famous list of
problems for the Fifth International Congress of Mathematicians in 1954 he is-
sued but one challenge, to further explore that quantum-physical logic. Infinite-
dimensional problems in first-order logic aroused von Neumann’s mathematical
interest, and here we face finite questions in higher-order logic. I hope these elemen-
tary developments stimulate other physicists too to explore von Neumann’s rich
legacy.
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